
Cache Related Pre-emption Delays in Probabilistic
Real Time System

Prof. Minal V. Domke* , Prof. Pritee Saktel, Prof. Ekta Gupta
Shri. Ramdeobaba College of Engineering and Management,

 Nagpur University

Abstract— In Real Time systems with cache, multiple tasks
can share this common resource which can lead to cache-
related pre-emption delays (CRPD) being introduced. CRPD is
the additional cost incurred from resuming a pre-empted task
that no longer has the instructions or data it was using in
cache, because the pre-empting task(s) evicted them from
cache. It is therefore important to be able to account for
CRPD when performing schedulability analysis. This research
focuses on the effects of CRPD on a single processor system,
further expanding understanding of CRPD and ability to
analyse and optimise for it. It present new CRPD analysis for
Earliest Deadline First (EDF) scheduling that significantly
outperforms existing analysis, and then perform the first
comparison between Fixed Priority (FP) and EDF accounting
for CRPD. In this comparison,the effects of CRPD across a
wide range of system and taskset parameters are explored and
a new task layout optimisation technique that maximises
system schedulability via reduced CRPD.

Keywords—EDF,SCHEDULABILITY,DELAY,CPRD,PRE-
EMPTION

1. INTRODUCTION
We are surrounded by embedded systems contained within
larger devices, from medical pacemakers to the engine and
control systems in large commercial aircraft. many of these
embedded systems are also real-time systems that have
specific deadlines that they must meet, and are often
required to interact with an outside environment. it is
therefore important that these real-time systems meet their
temporal requirements, as well as being functionally correct.
real-time systems can be categorised as soft and hard real-
time. a soft real-time system can tolerate a moderate
number of deadline misses, at the expense of reduced
quality of service, such as in a live video streaming system.
in contrast, a deadline miss in a hard real-time system
would constitute a failure of the system. some hard real-
time systems are also safety critical systems such that a
deadline miss, and thus a system failure, could cause
someone physical harm. most real-time systems are multi-
tasking systems built up of a number of individual tasks. to
verify the temporal behaviour of a multi-tasking system,
the execution time of each task must be determined, and
then combined together with information about the
scheduling policy to ensure that there are enough resources
to run all of the tasks that make up the system. this is
usually achieved by performing timing analysis on the
individual tasks, and then schedulability analysis on the
system as a whole.

Cache Related Pre-emption Delays
In a pre-emptive multi-tasking system with cache,
when a task is pre-empted, cache-related pre-emption
delays (CRPD) can be introduced. CRPD is the
additional cost incurred from resuming a pre-empted
task that no longer has the instructions or data it was
using in cache, because the pre-empting task(s)
evicted them from cache. CRPD will be incurred as
the task uses data and invokes instructions during the
remainder of its execution that were evicted by the
pre-empting task(s). CRPD is not a fixed cost per pre-
emption, as is usually the case for traditional context
switch costs, so simply subsuming an upper bound on
the CRPD into the execution time of the pre-empting
task could be very pessimistic. It is therefore
important to accurately account for CRPD when
performing schedulability analysis on a real-time
system. There are techniques that can be used to
reduce or completely eliminate CRPD, usually at the
expense of increased task WCETs. For example, the
cache can be partitioning so that each task has its own
space in cache. However, Altmeyer et al. [3] recently
noted that the increased predictability of a partitioned
cache, in terms of eliminating CRPD, does not
compensate for the performance degradation in the
WCETs due to the smaller cache space per task.

1.1 Real-Time Scheduling
In real applications a system is usually built up of a number
of tasks, collectively called a taskset. In addition to
calculating the WCET of every task in isolation it is just as
important to ensure that all the tasks, when running on the
same platform and sharing resources, will meet their
deadlines.
A scheduling policy is used to determine which task in the
taskset should run at any given point in time. Scheduling
policies can be classified as either offline or online. Offline
scheduling, often referred to as static cyclic scheduling,
uses a pre-computed schedule with very low runtime
overhead. Online scheduling does not generate a schedule
in advance, and instead determines which task should run at
runtime. Under offline scheduling, the pre-determined
schedule ensures that the schedulability of the system is
known in advance. Sporadic jobs are more difficult to
accommodate, but can be served using spare capacity.

Minal V. Domke et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 903-907

www.ijcsit.com 903

Some classical online scheduling policies include:
� Fixed Priority (FP) [1] [2] - Fixed priority policy where
tasks are allocated priorities offline and then scheduled
according to those priorities at runtime .

� Earliest Deadline First (EDF) [2] - Dynamic priority
policy where jobs with earlier absolute deadlines are given
higher priorities. As the priorities are based on absolute
deadlines of the individual jobs, task priorities change
dynamically over the course of the schedule.

1.2 Schedulability Analysis
We now briefly cover existing schedulability analysis for
FP and EDF scheduling assuming context switch costs are
constant and subsumed into the tasks’ execution times.

FP Scheduling
FP scheduling assigns each task a fixed priority which is
then used as the priorities of the tasks’ jobs. Under FP
scheduling the sets of tasks that can pre-empt each other are
based on the statically assigned fixed task priorities. Using
the fixed priorities, we can define the following sets of
tasks for determining which tasks can pre-empt each other:
hp(i) and lp(i) are the sets of tasks with higher and lower
priorities than task τi, and hep(i) and lep(i) are the sets
containing tasks with higher or equal and lower or equal
priorities to task τi.

The exact schedulability test for FP scheduling assuming
constrained deadlines calculates the worst case response
time for each task and then compares it to its deadline. The
equation used to calculate Ri is :

(a)

Equation (a) can be solved using fixed point iteration.
Iteration starts with the minimum possible response time,
Under FP there are a number of techniques that can be used
to assign the fixed priorities. Deadline Monotonic [1]
assigns higher priorities to tasks with shorter deadlines.
Rate Monotonic [2] assigns higher priorities to tasks with
shorter periods. Audsley’s Optimal Priority Assignment
(OPA) algorithm [14] takes a different approach. Using a
greedy algorithm it evaluates the schedulability of each
task, from lowest to highest priority, to devise an optimal
priority for each task. It can be applied assuming the
schedulability of a task meets certain conditions, such as
not being dependent on the relative priority ordering of
higher priority tasks. A drawback of OPA is that it selects
the first schedulable priority assignment that it finds, which
may result in a taskset that is only just schedulable. The
Robust Priority Assignment (RPA) algorithm [8] improves
on OPA by avoiding this drawback.
Assuming negligible pre-emption costs, Leung and
Whitehead [1] showed that Deadline Monotonic priority
ordering is an optimal priority ordering for constrained
deadline tasks which can have synchronous releases. Rate
Monotonic is an optimal assignment for tasks with implicit

deadlines [2], and OPA can generate an optimal assignment
for tasks with arbitrary deadlines and periodic tasksets with
offset release times .

EDF Scheduling
In 673, Liu and Layland [2] gave an exact schedulability
test that indicates whether a taskset is schedulable under
EDF if and only if (iff) , under the assumption that all tasks
have implicit deadlines (Di = Ti). In the case where Di ≠ Ti
this test is still necessary, but is no longer sufficient.
Assuming negligible pre-emption costs, in 141 Dertouzos
[4] proved EDF to be optimal among all scheduling
algorithms on a uniprocessor. In 14, Leung and Merrill [5]
showed that a set of periodic tasks is schedulable under
EDF iff all absolute deadlines in the period [0,max{si}+
2H] are met, where si is the start time of task τi, min{si}=0,
and H is the hyperperiod (least common multiple) of all
tasks periods.
In 690 Baruah et al. [6], [7] extended Leung and Merrill’s
work [5] to sporadic tasksets. They introduced h(t), the
processor demand function, which denotes the maximum
execution time requirement of all tasks’ jobs which have
both their arrival times and their deadlines in a contiguous
interval of length t.

(b)

1.3 Real-Time Systems and Cache
There are a number of features in modern processors that
improve the average case performance, but make analysis
of systems difficult due to the uncertainty that they
introduce. These performance enhancing features include
caches, pipelines, branch predication and out-of-order
execution. When performing timing analysis they must be
accounted for as they can affect the execution time of the
basic blocks of code depending on what has been executed
previously. Furthermore, in a pre-emptive multi-tasking
system a pre-empting task can affect the execution time of
a pre-empted task by altering the state of these hardware
features, for example by evicting the contents of the cache.
In this thesis we focus on analysing the effects caused by
caches in real-time systems using pre-emptive multi-
tasking.
Caches are small fast memories which are used to speed up
access to frequently used blocks that reside in main
memory, either RAM or permanent storage such as
EPROM. CPU caches are either split into instruction and
data caches, or combined into a unified cache.
Figure. a shows a simplified representation of a CPU, 4KB
of cache and 4MB of EPROM that could be found in an
embedded system. Only a small percentage of the data or
instructions from memory can be stored in the cache at any
point in time, but accesses to the cache require significantly
fewer cycles. If the instruction or data resides in cache, then
accessing it will result in a cache hit, if not, it will result in
a cache miss and the instruction or data must be fetched
from memory first.

Minal V. Domke et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 903-907

www.ijcsit.com 904

Figure .a - Layout of the CPU, Cache and EPROM

Memory showing relative size and access times

Caches provide a predictable, but almost chaotic
performance boost. Provided the current state of the cache
is known, whether the next access will result in a hit or a
miss can be calculated. However, it can be very difficult to
keep track of the contents of the cache. Accessing data
which is in the cache will always be faster than accessing
data from memory. However, under some scenarios the
time taken to execute a set of instructions that are in cache
can even be slower than when the instructions are not
in cache. This is referred to as a timing anomaly and is
caused when other hardware features interact and result in
additional blocks having to be loaded from the cache. This
makes the ability to classify if a fetch will result in a hit or
a miss even more important [12]. One solution is to simply
disable the cache. However, as the demands of embedded
systems increase it becomes increasingly cost ineffective to
keep caches disabled as they can provide such a significant
performance increase]. It is therefore important to be able
to analyse systems with cache in order to verify todays’
embedded systems.
Many aerospace systems partition different software
systems so that they cannot interfere with each other. As
caches are shared amongst everything running on a
processor this is a cause for concern. CAST-7 [9]
investigated caches in aerospace systems. In particular, it
noted that “cache memory should receive special scrutiny
in a partitioned system because the cache mechanism is not
aware of the address partitioning architecture” [9]. This is a
concern as the partitions are supposed to ensure that tasks
in one partition do not affect another. However, as caches
are not aware of the partitioning tasks in one partition can
evict instructions and data belonging to a task in a different
partition. This in turn can then affect the execution time of
the other task, despite them being separated.
Another problem with cache and predicting its behaviour is
that an empty cache is not always the worst case. For
example, when the write back policy is being used on a
data cache, blocks have to be written back to memory
before they can be evicted.
An additional case where an empty cache is not the worst
case is the domino effect [8]. The domino effect describes a
situation where a repeating pattern of instructions cause the
cache to transition through a number of states without
converging. This could occur when a loop repeatedly calls
a number of functions/instructions that are laid out in
memory in a specific way. Due to the initial state and
replacement policy, the cache does not end up in a
consistent state, which means a different number of cache
misses can occur on each loop iteration. Due to this effect,
it must be assumed that the worst case number of cache
misses occur on every iteration of the loop.

These factors combine together to make our ability to
accurately analyse caches very important when verifying
the temporal behaviour of real-time systems.

1.4 Timing Analysis
In order to determine if a taskset is schedulable when
running on a multi-tasking system, it is essential to know
how long each of the tasks could take to execute. This is
achieved by performing timing analysis on the tasks.
Timing analysis methods can be classified into three types
of analysis; static, measurement-based, and a combination
of the two hybrid measurement-based analysis. Static
analysis calculates the execution time for blocks using a
model of the hardware. Measurement-based analysis
executes the software on the target hardware and records
execution time measurements. Hybrid measurement-based
analysis combines the two. It determines the execution
times by measuring small sections of code, and then
calculates a bound on execution time based on the program
structure obtained using static analysis and the collected
measurements. While this thesis does not focus on timing
analysis, we present a brief review of the literature as it
forms the basis for later work on the cache analysis
required by CRPD analysis.

1.5 Static Analysis
Static WCET analysis aims to calculate an upper bound on
the WCET by statically calculating what the execution time
for each block of code will be, and then combining them
together to find the worst-case path (WC path) through the
code.

II INITIAL WORK
Early work on static WCET analysis was driven by the
seminal paper by Puschner and Koza in 689 [13]. In [13],
Puschner and Koza used source code to try to calculate an
upper bound on the maximum execution time of tasks.
Calculating an estimate for the WCET of an arbitrary
program reduces to the Halting problem [11]. It was
therefore apparent from the onset that a number of
restrictions would have to be placed on the code in order to
facilitate estimation by bounding the execution time. Some
of those restrictions such as not using GOTOs and not
having unbounded loops and recursive procedures are still
present in today’s techniques. In order to add additional
information to the source code a number of high level path
description constructs were defined. These were based on C
like syntax and include things such as the ability to specify
the maximum number of iterations for loops using bounds,
and markers for dealing with multiple paths through loops.
They proposed a set of formula, or timing schema, that
could be used to combine together execution times for
simple language constructions, assuming the execution
time for them could be obtained. For example the execution
time for a sequence of statements is the sum of the
execution times for each statement. A downside of this
approach is that it requires modifying the source code in
ways such as replacing standard loops with their modified
bounded versions.

Minal V. Domke et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 903-907

www.ijcsit.com 905

2.1WCET Analysis Processes
Modern static WCET analysis uses IPET to express the
analysis problem as an ILP that is solved by maximising an
objective function to find the path with maximal length.
The execution times of basic blocks are determined using
very detailed and accurate hardware. There are different
approaches that can be used to find and combine all the
required information, but it is usually broken down into the
following phases [14] . Reconstruction of the call graph
(CG) and control flow graph (CFG), architecture modelling
broken down into pipeline analysis and cache analysis, and
value analysis. Finally, path analysis, which is the process
of generating and solving an ILP, to compute the path
through the program that maximises the execution time.

Figure .C - WCET analysis process for a typical static analysis

tool

2.2 Cache Related Pre-emption Delays
When a pre-emption occurs there is a mandatory delay
introduced by the need to save the state of the current task,
decide which task to switch to, and then setup the new task.
This delay is known as the context switch cost (CSC). As
this is a fairly constant cost, it can usually be upper
bounded and then subsumed into the execution time of the
pre-empting task. In other words, in order to perform
schedulability analysis on a taskset, the execution time of
each task in the system is inflated by a bound on the time
taken by the scheduler/operating system to switch to and
then back from a task.
In a system with cache after a pre-emption occurs there can
be additional costs due to interferences on the cache which
affect the pre-empted task(s). This is known as cache-
related pre-emption delay (CRPD) and it cannot simply be
subsumed into the execution time of the pre-empting task
without potentially introducing significant pessimism. This
is because CRPD is dependent on the pre-empting and pre-
empted tasks and the point of pre-emption. Specifically, it
is incurred when a pre-empted task resumes and no longer
has the instructions or data that the task was using in cache,

because the pre-empting task(s) evicted them from cache. It
is therefore difficult to determine the exact CRPD because
the delay will not be incurred at once. Instead, CRPD will
be incurred as the task uses data and invokes instructions
that were evicted by the pre-empting task(s) during the
remainder of its execution. In addition to being highly
variable, CRPD can be significantly larger than CSC. In a
study of a large multicore platform, Bastoni et al. [15]
found the CSC to be around 5-10μs in the worst case, with
variation being down to the number of tasks and scheduling
policy which would not be changed at runtime. In
comparison, they found the worst-case pre-emption costs to
be much greater and more varied than the CSC, specifically
they varied between 1-1300μs depending on the cache
usage and system load. Figure C shows an example pre-
emption with a small amount of CSC occurring when
switching tasks and a large amount of CRPD spread out
during the execution of a task after being pre-empted.

Figure D. Illustration of the effects of a pre-emption. CSC are

incurred when switching tasks, and pre-emption delays are
incurred during the remainder of a tasks execution after pre-
emption as it accesses blocks that were evicted from cache

during the pre-emption

As noted, the CSC is fairly constant and can be upper
bounded and is therefore usually subsumed into the
execution time of the pre-empting task. Figure E shows a
revised version of Figure D with the CSC replaced by an
increase to the execution time of task τ1.

Figure E - Illustration of how the CSC can be subsumed into
the execution time of the pre-empting task when compared to

Figure D

2.3 CRPD Analysis for FP Scheduling
In this section, we review existing approaches for
calculating CRPD when performing schedulability analysis
for FP scheduling. To account for the CRPD when
determining the schedulability of a taskset, a component is
introduced into the response time analysis equation for FP,
equation (a) , where represents the cost of a single pre-
emption of task τi by task τj. This gives a revised equation
for Ri as:

(b)

Minal V. Domke et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 903-907

www.ijcsit.com 906

2.4 CRPD Analysis for EDF Scheduling
In this section, we review an existing approach for
calculating CRPD when performing schedulability analysis
for EDF scheduling. The EDF scheduling always schedules
the job with the earliest absolute deadline first. Assuming
negligible pre-emption costs, it is an optimal scheduling
algorithm for a single processor. Any time a job arrives
with an earlier absolute deadline than the current running
job, it will pre-empt the current job. When a job completes
its execution, the EDF scheduler chooses the pending job
with the earliest absolute deadline to execute next. In the
case where two or more jobs have the same absolute
deadline, we assume the scheduler always picks the job
belonging to the task with the lowest unique task index, see
Figure F This has the benefit of minimising the number of
pre-emptions. In the case where two task jobs have the
same absolute and relative deadlines, it ensures that they
cannot pre-empt each other. Furthermore, it ensures that
after a pre-emption, the task that was pre-empted last
is resumed first.

Figure F. Example schedule showing how the scheduler
chooses which task should execute. Task τ3 is released at t =
0. At t = 5, task τ2 is released, pre-empting τ3 as although it
has the same absolute deadline, it has a lower task index. At t
= 6, task τ1 is released, pre-empting task τ2. At t = 7, τ1
completes, the scheduler then chooses to resume task τ2 as
although it has the same absolute deadline as task τ3, it
has the lower task index.

III CONCLUSION
The main contribution of this paper is a number of
approaches for calculating cache related pre-emption delay
(CRPD) in hierarchical systems with a global non-pre-
emptive scheduler and a local pre-emptive fixed priority
scheduler. This is important because hierarchical
scheduling has proved popular in industry as a way of
composing applications from multiple vendors as well as
re-using legacy code. However, unless the cache is
partitioned, these isolated applications can interfere with
each other, and so inter-component CRPD must be
accounted for, even if the cache is flushed after each global
context switch.

REFERENCES
[1] J. Y.-T. Leung and J. Whitehead, "On the Complexity of Fixed-

Priority Scheduling of Periodic Real-Time Tasks," Performance
Evaluation, vol. 2, no. 2, pp. 237-250, 682.

[2] C. L. Liu and J. W. Layland, "Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment," Journal of
the ACM, vol. 7, no. 1, pp. 46-126, January 673.

[3] S. Altmeyer, R. Douma, W. Lunniss, and R. I. Davis, "Evaluation of
Cache Partitioning for Hard Real-Time Systems," in Proceedings
26th Euromicro Conference on Real-Time Systems (ECRTS),
Madrid, Spain, 714, pp. 15-26.

[4] M. L. Dertouzos, "Control Robotics: The Procedural Control of
Physical Processes," in Proceedings of the International Federation
for Information Processing (IFIP) Congress, 141, pp. 807-813.

[5] J. Y.-T. Leung and M. L. Merrill, "A Note on Preemptive Scheduling
of Periodic, Real-Time Tasks," Information Processing Letters, vol.
11, no. 3, pp. 115-118, 680.

[6] S. K. Baruah, A. K. Mok, and L. E. Rosier, "Preemptive Scheduling
Hard-Real-Time Sporadic Tasks on One Processor," in Proceedings
of the 11th IEEE Real-Time Systems Symposium (RTSS), Lake Buena
Vista, Florida, USA, 1990, pp. 182-190.

[7] S. K. Baruah, L. E. Rosier, and R. R. Howell, "Algorithms and
Complexity Concerning the Preemptive Scheduling of Periodic Real-
Time Tasks on One Processor," Real-Time Systems, vol. 2, no. 4, pp.
301-324, 1990.

[8] R. I. Davis and A. Burns, "Robust Priority Assignment for Fixed
Priority Real-Time Systems," in Proceedings 28th IEEE Real-Time
Systems Symposium (RTSS), Tucson, Arizona, USA, 2009, pp. 3-14.

[9] Certification Authorities Software Team (CAST), "CAST-20
Addressing Cache in Airborne Systems and Equiptment," Position
Paper 2003.

[10] A. Colin and S. M. Petters, "Experimental Evaluation of Code
Properties for WCET Analysis," in Proceedings of the 24th IEEE
Real-Time Systems Symposium (RTSS), Cancun, Mexico, 2003, pp.
190-199.

[11] R. Kirner and P. Puschner, "Transformation of Path Information for
WCET Analysis During Compilation," in Proceedings of the 13th
Euromicro Conference of Real-Time Systems (ECRTS), 2001, pp. 29-
36.

[12] T. Lundqvist and P. Stenstrom, "Timing Anomalies in Dynamically
Scheduled Microprocessors," in Proceedings of the 20th IEEE Real-
Time Systems Symposium (RTSS), Phoenix, AZ , USA, 1999, pp. 12-
21.

[13] P. Puschner and C. Koza, "Calculating the Maximum Execution
Time of Real-Time Programs," The Journal of Real-Time Systems,
vol. 1, no. 2, pp. 159-176, 1989.

[14] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D.
Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F.
Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Stenström, "The
Worst-Case Execution Time Problem - Overview of Methods and
Survey of Tools," ACM Transactions on Embedded Computing
Systems (TECS), vol. 7, no. 3, April 2008.

[15] A. Bastoni, B. Brandenburg, and J. Anderson, "Is Semi-Partitioned
Scheduling Practical?," in Proceedings of the 23rd Euromicro
Conference on Real-Time Systems (ECRTS), Porto, Portugal, 2011,
pp. 125-135. [Online]. Extended version:
http://www.cs.unc.edu/~anderson/papers/ecrts11-long.pdf

Minal V. Domke et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 903-907

www.ijcsit.com 907

